
International Journal of Computer Trends and Technology Volume 68 Issue 11, 59-63, November 2020

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V68I11P108 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Compressed Representation of Color Information

for Converting 2D Images Into 3D Models

Poorna Banerjee Dasgupta

M.Tech Computer Science and Engineering, Nirma Institute of Technology, Ahmedabad, Gujarat, India.

Received Date: 14 October 2020

Revised Date: 22 November 2020

Accepted Date: 24 November 2020

Abstract - Three-dimensional (3D) modeling is applied in

numerous fields such as medical imaging, archaeology,

industrial fabrication of machine parts and tools, gaming,

animation, architecture, and interior design. In several

such applications, the 3D model is developed based on an

initial two-dimensional (2D) image of the model. An

important aspect of converting a 2D image into a 3D

model is the preservation and representation of the

associated color information. With the advent of 3D

printing technology, colored 3D models can be developed

from their corresponding 2D images and can then be

printed with the aid of 3D slicing software. Although

several file formats are available for supporting generic

3D printing, only a few of them support colored 3D

printing. Additionally, if the 3D model is complex, the

associated color data will be huge, which will lead to

longer processing times and greater storage requirements

for both the 3D modeling software and the 3D slicing

software. Hence, in this study, a lossy compression

algorithm is proposed for representing the color

information associated with OBJ and MTL file formats.

The proposed compression algorithm has been designed to

reduce the memory storage required for representing a 3D

model’s color information without significantly affecting

the model’s visual color appearance.

Keywords - 3D modeling, 3D printing, lossy compression,

MTL file format, OBJ file format.

I. INTRODUCTION

In generic terms, 3D modeling refers to the process of

developing a mathematical representation of any surface of

an object in three dimensions by employing specialized

software tools. 3D modeling has applications in numerous

fields such as medical imaging, archaeology, industrial

fabrication of machine parts and tools, gaming, animation,

architecture, and interior design. In several such

applications, the 3D model is created based on an initial

2D image of the model. One of the most common

techniques employed for converting a 2D image into its

corresponding 3D model involves adding depth to the

existing 2D image, also termed as image extrusion. For

example, Figure 1(a) depicts a simple rectangle, and

Figure 1(b) depicts the corresponding cuboid obtained

after adding depth (padding) to the said rectangle by using

the FreeCAD software. The process of image extrusion can

be employed for adding depth to both elementary and

complex shapes. After the 3D modeling process is

complete, the model can subsequently be used in graphics

applications or can be used for 3D printing. In this study,

the emphasis has been laid on 3D printing applications.

(a) (b)

Fig. 1 Example of image extrusion

(a) 2D rectangle (b) Corresponding padded cuboid

An important aspect of converting a 2D image into its

3D model is the preservation and representation of the

associated color information. With the advent of 3D

printing technology, colored 3D models can be developed

from their corresponding 2D images and can then be

printed with the aid of 3D slicing software. Slicing

software (slicer) is often used for converting a 3D model

into specific instructions for the 3D printer. Although

various file formats are available for developing and

storing a 3D model, only a few of them support color

representation and color 3D printing. Some of the file

formats that support 3D printing are STL, OBJ, VRML,

AMF, and 3MF. Out of these, the STL and OBJ file

formats are predominantly used for 3D printing [1][2].

The STL file format was developed by 3D Systems

and is widely used for rapid prototyping, 3D

printing, and computer-aided manufacturing [3]. The STL

file format is compatible with several software packages

associated with 3D modeling and printing. There are two

primary versions of the STL format, namely ASCII STL

and binary STL. Although the STL format is a popular

choice for 3D printing, it suffers from certain drawbacks.

Since the STL format incorporates triangular tessellation

for modeling an object‘s surface, the corresponding file

size can become extremely large while modeling complex

curved surfaces with high accuracy [4]. Additionally, the

https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/3D_computer_graphics_software
https://en.wikipedia.org/wiki/3D_computer_graphics_software
https://en.wikipedia.org/wiki/Rapid_prototyping
https://en.wikipedia.org/wiki/3D_printing
https://en.wikipedia.org/wiki/3D_printing
https://en.wikipedia.org/wiki/Computer-aided_manufacturing

Poorna Banerjee Dasgupta / IJCTT, 68(11), 59-63, 2020

60

STL format provides very limited support for color

representation. In some binary STL formats, such as those

used by VisCAM, SolidView, and Materialise Magics

software packages, a 16-bit parameter known as the

―attribute byte count‖ contains color information and is

accordingly specified for each tessellated triangle[3][5].

However, adding color information for each tessellated

triangle can further increase the file size and processing

time. Furthermore, such binary STL format variations are

non-standard and are often not supported by other software

packages. Consequently, the STL format is primarily

chosen for monochrome 3D printing.

The OBJ file format was developed by Wavefront

Technologies and is a popular choice for both 3D printing

and 3D graphics designing applications [1][6]. Unlike the

STL format, the OBJ format allows modeling of surfaces

through polygonal tessellation, freeform curves (such as

cardinal splines and Bezier curves), and freeform surfaces

(non-uniform rational B splines or NURBS). Furthermore,

the OBJ format provides support for representing color and

texture information through a supplementary file format,

namely the material template library (MTL) file format

[7][8]. MTL files are represented in the ASCII format, and

they contain surface shading properties of objects that can

be referenced by OBJ files for rendering 3D objects. In an

MTL file, the light reflecting properties of a surface are

specified according to the Phong reflection model [9].

Although the OBJ format supports the colored

rendering of 3D objects, the MTL file size can become

quite large when numerous materials with several color

and texture properties are defined in the file. Furthermore,

if an OBJ file containing objects with complex surface

geometries repeatedly references a large MTL file, the

corresponding processing time will be high as well. Based

on this premise, in this study, an algorithmic approach

based on lossy compression is proposed for representing

and compacting the color information of a 3D model

included in an MTL file, without significantly affecting the

model‘s visual color appearance. In Section II, the OBJ

and MTL formats are described in detail, and the proposed

algorithm is elaborated through two case-studies. Section

III comprises an in-depth analysis of the obtained results.

Finally, in Section IV, the conclusions derived from the

proposed study are elucidated, and the future scope of

work is discussed.

II. LOSSY COMPRESSION OF COLOR

INFORMATION

A. MTL and OBJ File Formats

As explained earlier, the OBJ format supports colored

rendering of 3D models with the aid of a companion file

format, namely the MTL format. Typically, to reference an

MTL file, the OBJ file will include ―mtllib‖ and ―usemtl‖

commands, as shown [8][10]:

mtllib [external .mtl file name]

usemtl [material name]

The ―mtllib‖ command is used for declaring the name of

the referenced MTL file that contains one or more named

material definitions. The ―usemtl‖ command is employed

for referencing a particular named material from the

declared MTL file. To represent color information

associated with defined materials, an MTL file includes

several light-reflecting parameters in accordance with the

Phong reflection model [8–10]. In Table, I, various MTL

light-reflecting properties with their corresponding data

types and value ranges are summarized.

Table 1.

Light-Reflecting Properties Specified In An Mtl File

Name Significance Data

Type

Value Range

Ka Represents the

ambient material
color in RGB format.

Floating

point

The value of each

color channel lies
in the range of

0.0–1.0.

Kd Represents the

material‘s diffuse
reflectivity in RGB

format.

Floating

point

The value of each

color channel lies
in the range of

0.0–1.0.

Ks Represents the
material‘s specular

reflectivity in RGB

format.

Floating
point

The value of each
color channel lies

in the range of

0.0–1.0.

Ns Represents the

material‘s specular

exponent.

Floating

point

The value lies in

the range 0.0–

1000.0.

Ni Represents the
material‘s optical

density (index of

refraction).

Floating
point

The value lies in
the range of 0.0–

10.0.

Tr/d Represents the

material‘s

transparency/non-
transparency.

Floating

point

The value lies in

the range of 0.0–

1.0.

Tf Represents the

material‘s

transmission filter
color in RGB format.

Floating

point

The value of each

color channel lies

in the range of
0.0–1.0.

illum Represents the

material‘s
illumination model.

Integer The value lies in

the range of 0–10.

It should be noted that the parameters Tr

(transparency) and d (dissolve or non-transparency) are

exact opposites of each other, and only either one of them

needs to be specified in the MTL file. Furthermore, the

value of the parameter illum determines the material‘s

lighting and shading effects such as spectral highlights and

shadow casting. It can be observed from Table I that

majority of the parameter values have the floating-point

data type, which is stored in a 32-bit format based on the

IEEE-754 standard [13]. Hence, if an MTL file contains

several material definitions, each material definition

Poorna Banerjee Dasgupta / IJCTT, 68(11), 59-63, 2020

61

having numerous defined properties, the file size can

become quite large, which in turn increases the processing

time. A compression algorithm is thus required for

compaction of the color information included in the MTL

file.

B. Compressing Color Information

Contrary to lossless compression algorithms, a lossy

compression algorithm incorporates inexact

approximations and partial discarding for representing data

[11][12]. Lossy compression techniques are employed for

reducing data size to efficiently store, handle, and transmit

large data, and they are often applied to multimedia data

such as audio, image, and video data. In the proposed

algorithmic approach, a lossy compression scheme was

designed for reducing the data size of color information

stored in an MTL file. The proposed algorithmic approach

comprises three components, namely the sending and

receiving MTL file parsers and the intermediate structure

(IS). The sending parser reads through an MTL file,

collects and compresses the necessary color information,

and generates the corresponding IS that stores the

compacted color information. The generated IS can

subsequently be exported and transmitted to other 3D

modeling and slicing software. The receiving parser

imports the transmitted IS and generates a new MTL file

based on the compressed data values, which can be

incorporated by other 3D modeling and slicing software.

Parsing is performed based on the following rules:

 The light-reflecting parameters are stored in the order:

Ka, Kd, Ks, Ns, Ni, Tr/d, Tf, and illum.

 All values in the IS are stored as 8-bit ASCII characters.

 All floating values between zero and one are rounded

and terminated at the first decimal position. For

example, 0.5963 will be stored as 0.6.

 All values for color channels are stored in the RGB

order.

 Parameter Ns is represented by five characters, and its

value can range from 0.000 to 999.9.

 Parameter Ni is represented by three characters, and its

value can range from 0.0 to 9.9.

 Parameter Tr/d is represented by four characters, and

its value can range from 0.0 to 1.0. The fourth

character is either 0 or 1 depending on whether Tr or d

is being represented; 0 indicates the parameter is Tr,

and 1 indicates the parameter is d.

 Parameter illum is represented by two characters and its

value can range from 0 to 10.

 Any missing parameter is represented by the null

character ‗\0‘.

 The end of a material definition is indicated by the

character ‗E‘ unless it‘s the last material definition.

In this study, the proposed parsers and IS were designed

with the help of the C programming language. Figure 2

illustrates the proposed IS template.

Fig. 2 IS template

Based on the IS template demonstrated in Figure 2, the

proposed sending parser algorithm was applied for two 3D

modeling case-studies, namely a triangular prism and a

cuboid. Figure 3(a) depicts the initial 2D image of a

triangle, and Figure 3(b) illustrates the corresponding 3D

prism obtained after image extrusion. Figure 3(c) depicts

the initial 2D image of a square, and Figure 3(d) illustrates

the corresponding 3D cuboid obtained after image

extrusion. In this study, the 3D modeling and rendering of

OBJ and MTL files were done with the help of the Blender

software package.

(a) (b)

(c) (d)

Fig. 3 Conversion of the 2D image to 3D model

(a) Initial 2D triangle (b) Corresponding padded prism

(c) Initial 2D square (d) Corresponding padded cuboid

As observed from Figure 3(a) and Figure 3(b), three

colors (i.e., three material definitions—G1, Y1, and R1)

were used in the original MTL file for the 3D prism.

Similarly, as observed from Figure 3(c) and Figure 3(d),

four colors (i.e., four material definitions—G2, B1, B2,

and R1) were used in the original MTL file for the 3D

cuboid. These MTL file specifications used for the prism

and cuboid are listed in Table II and Table III, respectively.

The corresponding ISs generated by the proposed sending

parser algorithm for the prism and cuboid are depicted in

Figure 4 and Figure 5, respectively.

Poorna Banerjee Dasgupta / IJCTT, 68(11), 59-63, 2020

62

Fig. 4 Generated IS for prism

Fig. 5 Generated IS for cuboid

Table 2.

Mtl light-reflecting property specification for prism

 Prism

Material

Name
G1 Y1 R1

Ka

(RGB)
0.0000

0.1993
0.0000

1.0000

1.0000
0.0000

0.2314

0.0000
0.0000

Kd

(RGB)
0.0166

0.6102

1.0000

1.0000

0.6022

0.0166

0.0000 0.0000 0.0000

Ks

(RGB)
0.2084
0.5991

0.2084

0.2991
0.2991

0.0000

0.5963
0.2014

0.1974

Ns 110.2133 120.1123 120.1217

Ni 1.4 1.33 1.26

Tr/d d=1.0 Tr=0.0 Tr=0.0

Tf

(RGB)
0.0166
0.6102

0.0000

1.0000
1.0000

0.0000

0.6022
0.0166

0.0000

illum 2 2 2

Table 3.

Mtl light-reflecting property specification for cuboid

 Cuboid

Material

Name
G2 B1 B2 R1

Ka

(RGB)
0.1993
0.1993

0.0000

0.0000
1.0000

1.0000

0.0000
0.0000

0.1986

0.2314
0.0000

0.0000

Kd

(RGB)
0.6145

0.6145
0.0000

0.0000

1.0000
1.0000

0.0166

0.0000
0.5922

0.6022

0.0166
0.0000

Ks

(RGB)
0.2991

0.2991
0.0000

0.0000

0.2973
0.2973

0.2084

0.2084
0.5974

0.5963

0.2014
0.1974

Ns 110.2133 100.1425 100.2237 120.1217

Ni 1.4 1.28 1.31 1.26

Tr/d d=1.0 Tr=0.0 d=1.0 Tr=0.0

Tf

(RGB)
0.6145

0.6145
0.0000

0.0000

1.0000
1.0000

0.0166

0.0000
0.5922

0.6022

0.0166
0.0000

illum 2 2 2 2

III. RESULT ANALYSIS

The ISs generated by the sending parser algorithm

were decoded by the receiving parser algorithm, and the

MTL light-reflecting properties were extracted for creating

new MTL files based on the extracted values. Figure 6(a)

illustrates the regenerated prism, and Figure 6(b) depicts

the regenerated cuboid. Upon visual comparison with their

respective original counterparts, i.e., Figure 3(b) and

Poorna Banerjee Dasgupta / IJCTT, 68(11), 59-63, 2020

63

Figure 3(d), it can be observed that there is no discernible

change in the visual color appearance of the 3D models.

(a) (b)

Fig. 6 Regenerated 3D models

(a) Prism (b) Cuboid

Statistics of the achieved data compression are

summarized in Table IV. It can be observed from Table IV

that by generating ISs, the proposed algorithmic approach

can achieve significant compression of color information

(up to 71%) without any apparent change in the visual

color appearance. It should be noted that the file sizes

mentioned in Table IV refer to the actual data size, not the

disk storage size (which varies according to the file

allocation block-size used by the host operating system).

Furthermore, since the compressed representation of color

information through the IS template can help realize a

considerable reduction in data size, the associated

transmission and processing times get reduced as well.

In this study, an algorithmic approach was developed

for the compressed representation of color information

included in an MTL file, which serves as the companion

file format for OBJ files, while rendering colored 3D

models from 2D images. The proposed algorithmic

approach comprises three components, namely the sending

and receiving parsers and the IS. By incorporating the

compacted representation of color information in the

generated IS, a considerable reduction in the data size is

achieved without significantly affecting the model‘s visual

color appearance, which in turn decreases the data

transmission and processing times.

Table 4.

Statistics of achieved data compression

IV. CONCLUSION

In this study, the OBJ and MTL file formats were

chosen because the emphasis was laid on 3D printing

applications. Furthermore, while compressing the color

information, the emphasis was laid on light-reflecting

properties. As future work, the proposed algorithmic

approach can be extended to 3D graphics applications, and

other parameters associated with color information (such

as texture maps) can be included for data compression.

Furthermore, the proposed IS can further adapted for

including format variations of color parameters, and

duplicate data values occurring in the IS can be further

compressed.

REFERENCES
[1] Dibya Chakravorty. (2018) OBJ File Format. [Online] Available:

https://all3dp.com/1/obj-file-format-3d-printing-cad
[2] Cătălin Iancu, Daniela Iancu, and Alin Stăncioiu, From CAD

Model To 3D Print Via "STL" File Format, Fiability & Durability,

1(2010) 73-80.
[3] StereoLithography Interface Specification, 3D Systems Inc.,(1989).

[4] Dibya Chakravorty. (2019) STL File Format. [Online] Available:

https://all3dp.com/what-is-stl-file-format-extension-3d-printing/
[5] Jonathan D. Hiller and Hod Lipson, STL 2.0: A Proposal for a

Universal Multi-Material Additive Manufacturing File Format,

Cornell University. (2009).
[6] WANG Jin-feng and YAO Guo-qing, OBJ Three-dimensional

Model File Format in OpenGL Input and Processing, Computer

Knowledge and Technology, 2011.
[7] Cătălin Iancu, 3D PRINTING FILE FORMATS, Constantin

Brâncuşi University, 2018.

[8] MTL Files: Material Definitions for OBJ Files. (2018) [Online]
Available: https://people.sc.fsu.edu/~jburkardt/data/mtl/mtl.html

[9] Bui Tuong Phong, Illumination for computer-generated pictures,

Communications of ACM 18, No. 6, 311–317, 1975.

[10] Diane Ramey, Linda Rose, and Lisa Tyerman, MTL Material
Format (Lightwave, OBJ), Alias and Wavefront Inc., 1995.

[11] Pavithra Mohan, "Enhanced Image Compression System" SSRG

International Journal of Mobile Computing and Application 6.3
(2019): 1-7.

[12] Ian H. Witten et al., Semantic and Generative Models for Lossy

Text Compression, The Computer Journal, Oxford University
Press, 1994.

[13] IEEE 754-2019 - IEEE Standard for Floating-Point Arithmetic.

(2019) [Online]
[14] Available: https://standards.ieee.org/standard/7542019.html

 Prism Cuboid

Original

MTL File

Size

522 Bytes 701 Bytes

Regenerated

MTL File

Size

414 Bytes 553 Bytes

IS Size 152 Bytes 203 Bytes

Compression

Rate

compression of

MTL file size:

(1 - 414/522) x

100

= 21%

compression of

file size with

respect to IS:

(1 - 152/522) x

100

= 70.9%

compression of

MTL file size:

(1 - 553/701) x

100

= 21.1 %

compression of

file size with

respect to IS:

(1 - 203/701) x

100

= 71%

